

CLASS X SAMPLE PAPER MATHEMATICS

Max. Marks: 80

Note: (i) This question paper consists of 40 questions divided into 4 sections A,B,C &D.

(ii) Questions in Section A carry 1 mark each, Section B carry 2 marks each, Section C carry 3 marks each and Section D carry 4 marks each.

(iii) There is no overall choice. However, internal choices are provided in 2 questions of Section A, 2 questions of Section B, 3 questions of Section C and 3 questions of Section D.

(iv) Use of calculators prohibited.

Section-A

1.	15 years hence a man will be 4 times as old as he was 15 tears ago. His present age is-						
	a) 25 years	b) 20 years	c) 15 years	d) 10 years			
2.	a, b and c are positive	ve integers such that 'a	i' is a factor of 'b'; and	'c' is a multiple of 'b'.			
	Then L.C.M(a,b,c) is						
	a) <i>b</i>	b) <i>a</i>	c) abc	d) <i>c</i>			
3.	Smallest number tha	t leaves remainder 12	and 8 when divided by	[,] 32 and 28 is —			
	a) 204	b)224	c) 216	d) 194			
4.	The mid-point of the	line joining points (3,-	2) and (-5, -2) lies in	quadrant.			
	a) First	b) Second	c) Third	d) Fourth			
5.	Perimeter of the tria	ngle formed by the poi	nts (0,0), (1,0) and (0,2	1) is			
	a) 1 + √2 units	b) √2 + 1 units	c) 2 units	d) 2 + √2 units			
6.	If 'x' is a positive inte	ger such that the dista	nce between the poin	ts (x, 2) and (3, -6) is 10			
	units then x =						
	a) 3 b) -3	c) 9	d) – 9				
7.	Given tan A = $\frac{6}{2}$, the	c) 9 n value of $\frac{5 \sin A - 3 \cos A}{4 \cos + 5 \sin A}$ c) $\frac{3}{4}$ d) $\frac{1}{2}$	is				
	3/ b) 3	4 cos +5 sin A					
	a) 75 0) $\frac{-}{10}$	C) 74 U) 72					
8.	$\frac{1+\tan^2 A}{1+\cot^2 A} = \underline{\hspace{1cm}}$						
	1+ LUL - A						

	a) Sec ² A	b) – 1	c) cot ² A	d) tan² A
9.	$8 \sec^2 A - 8 t$	$an^2 A =$		
	a) 1	b) – 8	c) 8	d) none of these

10. A dye is tossed. The probability of getting an even score is _____

a) $\frac{1}{6}$

b) ⅓

c) 1/3

d) ½

Questions 11-15 fill in the blanks:

- 11. Diagonals of a quadrilateral intersect proportionally. The quadrilateral is a _____.
- 12. A biquadratic polynomial is divided by a cubic polynomial. The remainder is of the form
- 13. The entire range of outcomes in a random experiment is known as
- 14. A square of side 4 cm is inscribed in a circle. Hence area of the circle not included in the square is $____(\Pi=3.14)$
- 15. The formula for solving a pair of linear equations in two variables by method of cross multiplication is _____.

Questions 16-20 Short answer questions.

- 16. Primefactorise 1587.
- 17. Find the sum of 50, 46, 42..... upto ten terms.
- 18. Find the zeroes of the polynomial $4\sqrt{3} x^2 + 5x 2\sqrt{3}$
- 19. The length of tangent of circle drawn from a point13 cm away from the centre is 12 cm. Find the radius of the circle.
- 20. ABC is an isosceles triangle with AB = AC.D and E are midpoints of AB and AC. Find the ratio of area of \triangle ADE to \triangle ABC.

Section-B

21. Solve the equation $2x^2 - 2\sqrt{6}x + 3 = 0$ using quadratic formula.

OR

Determine the value of 'm' and 'n' for which following system of equations will have infinitely many solutions. (2m - 1)x + 3y - 5 = 0 : 3x + (n - 1)y - 2 = 0.

22. Draw a line segment AB= 8cm and divide it in the ratio 3:4

OR

ABC is an equilateral triangle and AD \square BC. Prove that $4AD^2 = 3AB^2$.

- 23. Evaluate: $\csc(65^{\circ} + \theta) \sec(25^{\circ} \theta) \tan 55^{\circ} \theta) + \cot(35^{\circ} + \theta)$
- 24. ABCD is a square of side 7 cm. From each vertex a quandrant is drawn wth radius equal to half of the side. Find the area of the region of the square exterior to quadrants.
- 25. 50 cards are numbered 1-50. One card is drawn at random. What is the probability that the drawn card bears (i) a square number (ii) a multiple of 3 and 5.
- 26. From a pack of well shuffled cards all Hearts are removed. One card is drawn at random. What is the probability that the drawn card is a (i) face card (ii) black card.

Section - C

27. Prove that $\sqrt{3}$ is irrational.

OR

If 'x' and 'y' are two odd positive integers prove that $x^2 + y^2$ is even but not divisible by 4.

- 28. Solve for 'x' and 'y': $\frac{xy}{x+y} = \frac{6}{5}$; $\frac{xy}{y-x} = 6$ $x + y \neq 0$ and $y x \neq 0$
- 29. Two stations A and B are 80 km apart. Two cars start from these stations simultaneousy. If they travel in the same direction they meet in 8 hours but if they travel in the opposite direction they meet in 4/7 hours. Find the speeds of the cars.
- 30. Determine the ratio in which the line 3x 2y + 5 = 0 divides the line joining the points (3, 2) and (-2, 7).

OR

Find the area of the triangle whose vertices are (3, 2), (-2, 5) and (-4, -3)

31. A square park of side 84m has circular flower beds at each corner and at the centre of the park. Each flower bed has a radius of 7m. Find the remaining area of the park and the cost of maintaining the flower beds at ₹ 15/ m²

OR

A bucket is in the form of a frustum of a cone whose top and bse radii are 21 cm and 14 cm. If the height of the bucket is 15 cm how many litres of water it can hold?

- 32. ABC is right triangle right angled at B. D, E and F are points on AB, AC and BC such that DEFB is a square. Prove that $DE^2 = AD$. FC
- 33. ABC is a right triangle right angled at C and CD ② ABIf BC = a, AB = b and CD = p prove that $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{p^2}$
- 34. Prove: $\frac{1-\sin A}{1+\sin A} = (\sec A \tan A)^2$

Section-D

35. A boat can go 36 km downstream and 16 km upstream in 5 hours. It can also go 18 km downstream and 24 km upstream in 4 ½ hours. Find the speed of stream and speed of boat in still water.

OR

Students of a class are made to stand in rows. If there were 2 students more in each row one row would be reduced. But had there been 4 students 3 more rows would be added. Find the number of rows and the strength of the class.

- 36. At 't' minutes past 2 : 00 P.M the time needed by the minute hand to show 3 :00 P.M was found to be 3 minutes less than $t^2/4$ minutes. Find 't'.
- 37. If the mean of the following data is 38, find the missing frequency.

CBSEGuess.com

Class Int	0-10	10-20	20-30	30-40	40-50	50-60	60-70
Frequency	4	5	x	15	12	8	7

OR

A student noted number of cars passing through spot on a roadfor 100 periods of 3 minutes each and summarized it as shown in the table below. Find the mode of the data.

No.of cars	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80
Frequency	7	14	13	12	20	11	15	8

38. Prove that areas of two similar triangles are proportional to the squares of corresponding sides.

OR

ABC is an acute triangle and AD \square BC Prove that $A\hat{C} = AB^2 + BC^2 - 2$ BC.BD

- 39. A circus tent is cylindrical up to a height of 3m and conical above it. The total height of the tent is 13.5 m.. Calculate cost of canvas used for the tentat ₹ 4/m² if the radius of the base is 14 m.
- 40. Angle of elevation of the top of a 150 m high cliff from a point on the ground is found to be 30° . After walking-horizontally-certain distance towards the cliff the angle of elevation changes to 60° . Find the distance between two observation points.(V3=1.732)