CLASS X
 SAMPLE PAPER MATHEMATICS

Max. Marks: 80
Note: (i) This question paper consists of 40 questions divided into 4 sections $A, B, C \& D$.
(ii) Questions in Section A carry 1 mark each, Section B carry 2 marks each, Section C carry 3 marks each and Section D carry 4 marks each.
(iii) There is no overall choice. However, internal choices are provided in 2 questions of Section A, 2 questions of Section B, 3 questions of Section C and 3 questions of Section D.
(iv) Use of calculators prohibited.

Section-A

1. 15 years hence a man will be 4 times as old as he was 15 tears ago. His present age is-
a) 25 years
b) 20 years
c) 15 years
d) 10 years
2. a, b and c are positive integers such that ' a ' is a factor of ' b '; and ' c ' is a multiple of ' b '. Then L.C.M (a, b, c) is \qquad
a) b
b) a
c) $a b c$
d) c
3. Smallest number that leaves remainder 12 and 8 when divided by 32 and 28 is -
a) 204
b) 224
c) 216
d) 194
4. The mid-point of the line joining points $(3,-2)$ and $(-5,-2)$ lies in -----quadrant.
a) First
b) Second
c) Third
d) Fourth
5. Perimeter of the triangle formed by the points $(0,0),(1,0)$ and $(0,1)$ is
a) $1+\sqrt{ } 2$ units
b) V2 + 1 units
c) 2 units
d) $2+\sqrt{ } 2$ units
6. If ' x ' is a positive integer such that the distance between the points $(x, 2)$ and $(3,-6)$ is 10 units then $x=$
a) 3
b) -3
c) 9
d) -9
7. Given $\tan \mathrm{A}=\frac{6}{5}$, then value of $\frac{5 \sin A-3 \cos A}{4 \cos +5 \sin A}$ is \qquad
a) $3 / 5$
b) $\frac{3}{10}$
c) $3 / 4$
d) $1 / 2$
8. $\frac{1+\tan ^{2} A}{1+\cot ^{2} A}=$ \qquad
a) $\operatorname{Sec}^{2} A$
b) -1
c) $\cot ^{2} \mathrm{~A}$
d) $\tan ^{2} \mathrm{~A}$
9. $8 \sec ^{2} A-8 \tan ^{2} A=$ \qquad
a) 1
b) -8
c) 8
d) none of these
10. A dye is tossed. The probability of getting an even score is \qquad
a) $\frac{1}{6}$
b) $1 / 5$
c) $1 / 3$
d) $1 / 2$

Questions 11-15 fill in the blanks:

11. Diagonals of a quadrilateral intersect proportionally. The quadrilateral is a \qquad .
12. A biquadratic polynomial is divided by a cubic polynomial. The remainder is of the form
13. The entire range of outcomes in a random experiment is known as \qquad
14. A square of side 4 cm is inscribed in a circle. Hence area of the circle not included in the square is \qquad ($\Pi=3.14$)
15. The formula for solving a pair of linear equations in two variables by method of cross multiplication is \qquad .

Questions 16-20 Short answer questions.

16. Primefactorise 1587.
17. Find the sum of $50,46,42$..... upto ten terms.
18. Find the zeroes of the polynomial $4 \sqrt{ } 3 x^{2}+5 x-2 \sqrt{ } 3$
19. The length of tangent of circle drawn from a point13 cm away from the centre is 12 cm . Find the radius of the circle.
20. $A B C$ is an isosceles triangle with $A B=A C . D$ and E are midpoints of $A B$ and $A C$. Find the ratio of area of $\triangle A D E$ to $\triangle A B C$.

Section-B

21. Solve the equation $2 x^{2}-2 v 6 x+3=0$ using quadratic formula.

OR
Determine the value of ' m ' and ' n ' for which following system of equations will have infinitely many solutions. $(2 m-1) x+3 y-5=0: 3 x+(n-1) y-2=0$.
22. Draw a line segment $A B=8 \mathrm{~cm}$ and divide it in the ratio $3: 4$

OR

$A B C$ is an equilateral triangle and $A D$ [$\quad B C$. Prove that $4 A B=3 A B^{2}$.
23. Evaluate: $\left.\operatorname{cosec}\left(65^{\circ}+\theta\right)-\sec \left(25^{\circ}-\theta\right)-\tan 55^{\circ}-\theta\right)+\cot \left(35^{\circ}+\theta\right)$
24. $A B C D$ is a square of side 7 cm . From each vertex a quandrant is drawn wth radius equal to half of the side. Find the area of the region of the square exterior to quadrants.
25.50 cards are numbered $1-50$. One card is drawn at random. What is the probability that the drawn card bears (i) a square number (ii) a multiple of 3 and 5 .
26. From a pack of well shuffled cards all Hearts are removed. One card is drawn at random. What is the probability that the drawn card is a (i) face card (ii) black card.

Section - C

27. Prove that $\sqrt{ } 3$ is irrational.

OR
If ' x ' and ' y ' are two odd positive integers prove that $x^{2}+y^{2}$ is even but not divisible by 4.
28. Solve for ' x ' and ' y ': $\frac{x y}{x+y}=\frac{6}{5} ; \frac{x y}{y-x}=6 \quad x+y \neq 0$ and $y-x \neq 0$
29. Two stations A and B are 80 km apart. Two cars start from these stations simultaneousy. If they travel in the same direction they meet in 8 hours but if they travel in the opposite direction they meet in $4 / 7$ hours. Find the speeds of the cars.
30. Determine the ratio in which the line $3 x-2 y+5=0$ divides the line joining the points $(3,2)$ and $(-2,7)$.

OR

Find the area of the triangle whose vertices are (3, 2), ($-2,5$) and ($-4,-3$)
31. A square park of side 84 m has circular flower beds at each corner and at the centre of the park. Each flower bed has a radius of 7 m . Find the remaining area of the park and the cost of maintaining the flower beds at ₹ $15 / \mathrm{m}^{2}$

OR
A bucket is in the form of a frustum of a cone whose top and bse radii are 21 cm and 14 cm . If the height of the bucket is 15 cm how many litres of water it can hold?
32. $A B C$ is right triangle right angled at B. D, E and F are points on $A B, A C$ and $B C$ such that $D E F B$ is a square. Prove that $D E^{2}=A D . F C$
33. ABC is a right triangle right angled at C and CD ($\mathrm{ABIf} \mathrm{BC}=a, \mathrm{AB}=b$ and $\mathrm{CD}=p$ prove that $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{p^{2}}$
34. Prove: $\frac{1-\sin A}{1+\sin A}=(\sec A-\tan A)^{2}$

Section-D

35. A boat can go 36 km downstream and 16 km upstream in 5 hours. It can also go 18 km downstream and 24 km upstream in $41 / 2$ hours. Find the speed of stream and speed of boat in still water.

OR
Students of a class are made to stand in rows. If there were 2 students more in each row one row would be reduced. But had there been 4 students 3 more rows would be added. Find the number of rows and the strength of the class.
36. At ' t ' minutes past $2: 00$ P.M the time needed by the minute hand to show $3: 00$ P.M was found to be 3 minutes less than $t^{2} / 4$ minutes. Find ' t '.
37. If the mean of the following data is 38 , find the missing frequency.

CBSEGuess.com

Class Int	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$
Frequency	4	5	x	15	12	8	7

OR
A student noted number of cars passing through spot on a roadfor 100 periods of 3 minutes each and summarized it as shown in the table below. Find the mode of the data.

No.of cars	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
Frequency	7	14	13	12	20	11	15	8

38. Prove that areas of two similar triangles are proportional to the squares of corresponding sides.

OR

$A B C$ is an acute triangle and $A D$ 回 $B C$ Prove that $A C=A B^{2}+B C^{2}-2 B C \cdot B D$
39. A circus tent is cylindrical up to a height of 3 m and conical above it. The total height of the tent is 13.5 m .. Calculate cost of canvas used for the tentat ₹ $4 / \mathrm{m}^{2}$ if the radius of the base is 14 m .
40. Angle of elevation of the top of a 150 m high cliff from a point on the ground is found to be 30°. After walking-horizontally-certain distance towards the cliff the angle of elevation changes to 60°. Find the distance between two observation points. $\left.(V)=1.732\right)$

